\(\int (a+a \cos (c+d x)) (A+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\) [7]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 86 \[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {a (A+2 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a (2 A+3 C) \tan (c+d x)}{3 d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

[Out]

1/2*a*(A+2*C)*arctanh(sin(d*x+c))/d+1/3*a*(2*A+3*C)*tan(d*x+c)/d+1/2*a*A*sec(d*x+c)*tan(d*x+c)/d+1/3*a*A*sec(d
*x+c)^2*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3111, 3100, 2827, 3852, 8, 3855} \[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {a (A+2 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a (2 A+3 C) \tan (c+d x)}{3 d}+\frac {a A \tan (c+d x) \sec ^2(c+d x)}{3 d}+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d} \]

[In]

Int[(a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(a*(A + 2*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (a*(2*A + 3*C)*Tan[c + d*x])/(3*d) + (a*A*Sec[c + d*x]*Tan[c + d*x
])/(2*d) + (a*A*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3111

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m +
 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp
[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e +
 f*x] + b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{3} \int \left (3 a A+a (2 A+3 C) \cos (c+d x)+3 a C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx \\ & = \frac {a A \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{6} \int (2 a (2 A+3 C)+3 a (A+2 C) \cos (c+d x)) \sec ^2(c+d x) \, dx \\ & = \frac {a A \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{2} (a (A+2 C)) \int \sec (c+d x) \, dx+\frac {1}{3} (a (2 A+3 C)) \int \sec ^2(c+d x) \, dx \\ & = \frac {a (A+2 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {(a (2 A+3 C)) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d} \\ & = \frac {a (A+2 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a (2 A+3 C) \tan (c+d x)}{3 d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.65 \[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {a \left (3 (A+2 C) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (6 (A+C)+3 A \sec (c+d x)+2 A \tan ^2(c+d x)\right )\right )}{6 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(a*(3*(A + 2*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(6*(A + C) + 3*A*Sec[c + d*x] + 2*A*Tan[c + d*x]^2)))/(6*
d)

Maple [A] (verified)

Time = 7.23 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.02

method result size
derivativedivides \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-a A \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a C \tan \left (d x +c \right )}{d}\) \(88\)
default \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-a A \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a C \tan \left (d x +c \right )}{d}\) \(88\)
parts \(-\frac {a A \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {a C \tan \left (d x +c \right )}{d}+\frac {a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(96\)
parallelrisch \(\frac {\left (-\frac {3 \left (A +2 C \right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2}+\frac {3 \left (A +2 C \right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2}+\left (\frac {2 A}{3}+C \right ) \sin \left (3 d x +3 c \right )+\sin \left (2 d x +2 c \right ) A +2 \left (A +\frac {C}{2}\right ) \sin \left (d x +c \right )\right ) a}{d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(140\)
risch \(-\frac {i a \left (3 A \,{\mathrm e}^{5 i \left (d x +c \right )}-6 C \,{\mathrm e}^{4 i \left (d x +c \right )}-12 A \,{\mathrm e}^{2 i \left (d x +c \right )}-12 C \,{\mathrm e}^{2 i \left (d x +c \right )}-3 A \,{\mathrm e}^{i \left (d x +c \right )}-4 A -6 C \right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{d}-\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{d}\) \(168\)
norman \(\frac {-\frac {2 a \left (A -2 C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a \left (A +2 C \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a \left (3 A -2 C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a \left (3 A +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {a \left (5 A +6 C \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {a \left (23 A +6 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a \left (A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a \left (A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(218\)

[In]

int((a+cos(d*x+c)*a)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/d*(a*A*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+a*C*ln(sec(d*x+c)+tan(d*x+c))-a*A*(-2/3-1/3
*sec(d*x+c)^2)*tan(d*x+c)+a*C*tan(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.24 \[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {3 \, {\left (A + 2 \, C\right )} a \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (A + 2 \, C\right )} a \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (2 \, A + 3 \, C\right )} a \cos \left (d x + c\right )^{2} + 3 \, A a \cos \left (d x + c\right ) + 2 \, A a\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/12*(3*(A + 2*C)*a*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(A + 2*C)*a*cos(d*x + c)^3*log(-sin(d*x + c) + 1)
 + 2*(2*(2*A + 3*C)*a*cos(d*x + c)^2 + 3*A*a*cos(d*x + c) + 2*A*a)*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F]

\[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=a \left (\int A \sec ^{4}{\left (c + d x \right )}\, dx + \int A \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int C \cos ^{2}{\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int C \cos ^{3}{\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)

[Out]

a*(Integral(A*sec(c + d*x)**4, x) + Integral(A*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(C*cos(c + d*x)**2*s
ec(c + d*x)**4, x) + Integral(C*cos(c + d*x)**3*sec(c + d*x)**4, x))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.24 \[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a - 3 \, A a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, C a \tan \left (d x + c\right )}{12 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a - 3*A*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c)
+ 1) + log(sin(d*x + c) - 1)) + 6*C*a*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 12*C*a*tan(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.81 \[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {3 \, {\left (A a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (A a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/6*(3*(A*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(A*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) -
 2*(3*A*a*tan(1/2*d*x + 1/2*c)^5 + 6*C*a*tan(1/2*d*x + 1/2*c)^5 - 4*A*a*tan(1/2*d*x + 1/2*c)^3 - 12*C*a*tan(1/
2*d*x + 1/2*c)^3 + 9*A*a*tan(1/2*d*x + 1/2*c) + 6*C*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 2.91 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.50 \[ \int (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (A+2\,C\right )}{d}-\frac {\left (A\,a+2\,C\,a\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {4\,A\,a}{3}-4\,C\,a\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (3\,A\,a+2\,C\,a\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x)))/cos(c + d*x)^4,x)

[Out]

(a*atanh(tan(c/2 + (d*x)/2))*(A + 2*C))/d - (tan(c/2 + (d*x)/2)*(3*A*a + 2*C*a) + tan(c/2 + (d*x)/2)^5*(A*a +
2*C*a) - tan(c/2 + (d*x)/2)^3*((4*A*a)/3 + 4*C*a))/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c
/2 + (d*x)/2)^6 - 1))